Tendencias de cambio de usos y coberturas de suelo en la cuenca hidrográfica media-alta del río Mira en Ecuador

Autores/as

DOI:

https://doi.org/10.14198/INGEO.25248

Palabras clave:

usos y coberturas de suelo, Markov, autómatas celulares, factores subyacentes, factores propulsores, SIG, Ecuador

Resumen

El empleo de sensores remotos junto a la información de los factores sociales propios de cada población permite el monitoreo del uso de los recursos naturales. El objetivo del presente estudio fue determinar el cambio y proyección a futuro de los usos y coberturas de suelo, y a la vez comprender, desde la perspectiva de los principales actores, los factores propulsores y subyacentes que impulsan estos cambios en la cuenca hidrográfica media-alta del río Mira. Para ello, se utilizaron imágenes multiespectrales, Landsat y Sentinel del año 1996, 2007 y 2018, a las cuales se las realizó un pretratamiento y tratamiento. Se efectuó una proyección de los cambios de coberturas y usos del suelo del 2018-2030 mediante el software TerrSet. Después, utilizando el método Delphi se identificaron los factores propulsores y subyacentes. Los resultados encontrados muestran que bosques y pastos presentaron una disminución sostenida, mientras que las áreas de cultivo y zonas urbanas aumentaron dentro de los periodos 1996-2018 y 2018-2030. Estos cambios se relacionan con el crecimiento urbano, agrícola, ganadero, minero y de la industria forestal; impulsados generalmente por el aumento poblacional, demanda de mercado, cambios de patrones de consumo, expansión de las carreteras e inexistencia de políticas ambientales.

Citas

Abad-Auquilla, A. (2020). El cambio de uso de suelo y la utilidad del paisaje periurbano de la cuenca del río Guayllabamba en Ecuador. Revista de Ciencias Ambientales, 54(2), 68-91. https://doi.org/10.15359/rca.54-2.4

Abdelkareem, O. E. A., Elamin, H. M. A., Eltahir, M. E. S., Adam, H. E., Elhaja, M. E., Rahamtalla, A. M., Babatunde, O., & Elmar, C. (2018). Accuracy assessment of land use land cover in Umabdalla natural reserved forest, South Kordofan, Sudan. International journal of agricultural and environmental sciences, 3(1), 5-9.

Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2017). Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio. International Journal of Applied Earth Observation and Geoinformation, 59, 65-78. https://doi.org/10.1016/j.jag.2017.03.006

Alqadhi, S., Mallick, J., Balha, A., Bindajam, A., Singh, C. K., & Hoa, P. V. (2021). Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia. Earth Science Informatics, 14(3), 1547-1562. https://doi.org/10.1007/s12145-021-00633-2

Altieri, M., Nicholls, C., & Montalba, R. (2017). Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability, 9(3), 349. https://doi.org/10.3390/su9030349

Andrade-Núñez, M. J., & Aide, T. M. (2018). Built-up expansion between 2001 and 2011 in South America continues well beyond the cities. Environmental Research Letters, 13(8), 084006. https://doi.org/10.1088/1748-9326/aad2e3

Arias-Muñoz, P., Saz, M. Á., & Escolano, S. (2023). Effects of land use change on soil erosion in the upper-middle basin of Mira river in Andean-Ecuador. Acta Geographica Universitatis Comenianae, 67(1), 115-140.

Astola, H., Häme, T., Sirro, L., Molinier, M., & Kilpi, J. (2019). Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257-273. https://doi.org/10.1016/j.rse.2019.01.019

Barrientos-Fuentes, J. C., & Torrico-Albino, J. C. (2014). Socio-economic perspectives of family farming in South America: Cases of Bolivia, Colombia and Peru. Agronomía Colombiana, 32(2), 266-275. https://doi.org/10.15446/agron.colomb.v32n2.42310

Bennett, A., Ravikumar, A., & Cronkleton, P. (2018). The effects of rural development policy on land rights distribution and land use scenarios: The case of oil palm in the Peruvian Amazon. Land Use Policy, 70, 84-93. https://doi.org/10.1016/j.landusepol.2017.10.011

Beroho, M., Briak, H., Cherif, E. K., Boulahfa, I., Ouallali, A., Mrabet, R., Kebede, F., Bernardino, A., & Aboumaria, K. (2023). Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sensing, 15(4), 1162. https://doi.org/10.3390/rs15041162

Beshir, S., Moges, A., & Dananto, M. (2023). Trend analysis, past dynamics and future prediction of land use and land cover change in upper Wabe-Shebele river basin. Heliyon, 9(9), e19128. https://doi.org/10.1016/j.heliyon.2023.e19128

Betru, T., Tolera, M., Sahle, K., & Kassa, H. (2019). Trends and drivers of land use/land cover change in Western Ethiopia. Applied Geography, 104, 83-93. https://doi.org/10.1016/j.apgeog.2019.02.007

Cabeza, Á. M. (2002). Ordenación del territorio en América Latina. Scripta Nova: Revista electrónica de geografía y ciencias sociales, 6(125), 1-35.

Carodenuto, S., Merger, E., Essomba, E., Panev, M., Pistorius, T., & Amougou, J. (2015). A Methodological Framework for Assessing Agents, Proximate Drivers and Underlying Causes of Deforestation: Field Test Results from Southern Cameroon. Forests, 6(12), 203-224. https://doi.org/10.3390/f6010203

Carrión, A., Vieyra, A., Arenas, F., & Alvarado, V. (2020). Políticas y prácticas de ordenamiento territorial en América Latina. Revista de Geografía Norte Grande, 77, 5-10. https://doi.org/10.4067/S0718-34022020000300005

Chang, Y., Hou, K., Li, X., Zhang, Y., & Chen, P. (2018). Review of Land Use and Land Cover Change research progress. IOP Conference Series: Earth and Environmental Science, 113, 012087. https://doi.org/10.1088/1755-1315/113/1/012087

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., & Myneni, R. B. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2), 122-129. https://doi.org/10.1038/s41893-019-0220-7

Comisión Económica para América Latina y el Caribe [CEPAL]. (2023). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: En la mitad del camino hacia 2030. Objetivos, metas e indicadores. https://repositorio.cepal.org/server/api/core/bitstreams/81eff451-0f82-4332-aee5-9f25f2950b45/content

Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: Principles and practices. CRC press. https://doi.org/10.1201/9780429052729

Coomes, O. T., Takasaki, Y., & Rhemtulla, J. M. (2011). Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover. Proceedings of the National Academy of Sciences, 108(34), 13925-13930. https://doi.org/10.1073/pnas.1012973108

Eastman, J. R. (2006). IDRISI Andes guide to GIS and image processing. Clark University, Worcester, 328.

Eastman, J., & Toledano, J. (2018). A short presentation of the Land Change Modeler (LCM). En Geomatic approaches for modeling land change scenarios (pp. 499-505). Springer. https://doi.org/10.1007/978-3-319-60801-3_36

Farrugia, D., Hanley, J., Sherval, M., Askland, H., Askew, M., Coffey, J., & Threadgold, S. (2019). The local politics of rural land use: Place, extraction industries and narratives of contemporary rurality. Journal of Sociology, 55(2), 306-322. https://doi.org/10.1177/1440783318773518

Fehlenberg, V., Baumann, M., Gasparri, N. I., Piquer-Rodriguez, M., Gavier-Pizarro, G., & Kuemmerle, T. (2017). The role of soybean production as an underlying driver of deforestation in the South American Chaco. Global Environmental Change, 45, 24-34. https://doi.org/10.1016/j.gloenvcha.2017.05.001

Fu, F., Deng, S., Wu, D., Liu, W., & Bai, Z. (2022). Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustainable Cities and Society, 80, 103760. https://doi.org/10.1016/j.scs.2022.103760

Gallardo, M. (2018). Revisión y análisis de estudios de modelos de cambios de usos del suelo y de escenarios a futuro. Geographicalia, 70, 1-26. https://doi.org/10.26754/ojs_geoph/geoph.2018703278

Garcia, A. S., & Ballester, M. V. R. (2016). Land cover and land use changes in a Brazilian Cerrado landscape: Drivers, processes, and patterns. Journal of Land Use Science, 11(5), 538-559. https://doi.org/10.1080/1747423X.2016.1182221

García Valdés, M., & Suárez Marín, M. (2013). El método Delphi para la consulta a expertos en la investigación científica. Revista Cubana de Salud Pública, 39(2), 253-267.

Geist, H., McConnell, W., Lambin, E. F., Moran, E., Alves, D., & Rudel, T. (2006). Causes and trajectories of land-use/cover change. En Land-use and land-cover change: Local processes and global impacts (pp. 41-70). Springer. https://doi.org/10.1007/3-540-32202-7_3

Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092

Gibson, L., Münch, Z., Palmer, A., & Mantel, S. (2018). Future land cover change scenarios in South African grasslands–implications of altered biophysical drivers on land management. Heliyon, 4(7). https://doi.org/10.1016/j.heliyon.2018.e00693

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2017). Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Modeling Earth Systems and Environment, 3, 1245-1262. https://doi.org/10.1007/s40808-017-0397-6

Girma, R., Fürst, C., & Moges, A. (2022). Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environmental Challenges, 6, 100419. https://doi.org/10.1016/j.envc.2021.100419

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20-22), 3761-3772. https://doi.org/10.1016/j.ecolmodel.2011.09.009

Gudiño, M. E. (2016). El Ordenamiento Territorial como política de Estado. Perspectiva Geográfica, 20(1), 11-36. https://doi.org/10.19053/01233769.4491

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112. https://doi.org/10.1016/j.apgeog.2015.06.015

Henríquez Ruiz, C., & García Azócar, G. (2007). Propuesta de modelos predictivos en la planificación territorial y evaluación de impacto ambiental. Scripta Nova. Revista Electrónica de Geografía y Ciencias Sociales, 11(245), 1-17.

Heredia-R, M., Torres, B., Cabrera-Torres, F., Torres, E., Díaz-Ambrona, C. G., & Pappalardo, S. E. (2021). Land Use and Land Cover Changes in the Diversity and Life Zone for Uncontacted Indigenous People: Deforestation Hotspots in the Yasuní Biosphere Reserve, Ecuadorian Amazon. Forests, 12(11), 1539. https://doi.org/10.3390/f12111539

Herrera-Franco, G., Escandón-Panchana, P., Montalván, F. J., & Velastegui-Montoya, A. (2022). CLUE-S model based on GIS applied to management strategies of territory with oil wells—Case study: Santa Elena, Ecuador. Geography and Sustainability, 3(4), 366-378. https://doi.org/10.1016/j.geosus.2022.11.001

Herrmann, S. M., Brandt, M., Rasmussen, K., & Fensholt, R. (2020). Accelerating land cover change in West Africa over four decades as population pressure increased. Communications Earth & Environment, 1(1), 53. https://doi.org/10.1038/s43247-020-00053-y

Hua, A. K. (2017). Application of CA-Markov model and land use/land cover changes in Malacca river watershed, Malaysia. Applied Ecology and Environmental Research, 15(4), 605-622. https://doi.org/10.15666/aeer/1504_605622

Iacono, M., Levinson, D., El-Geneidy, A., & Wasfi, R. (2015). A Markov chain model of land use change. TeMA Journal of Land Use, Mobility and Environment, 8(3), 263-276.

Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740

Linstone, H. A., Turoff, M., & others. (1975). The delphi method. Addison-Wesley Reading, MA.

Lippe, M., Thai Minh, T., Neef, A., Hilger, T., Hoffmann, V., Lam, N. T., & Cadisch, G. (2011). Building on qualitative datasets and participatory processes to simulate land use change in a mountain watershed of Northwest Vietnam. Environmental Modelling & Software, 26(12), 1454-1466. https://doi.org/10.1016/j.envsoft.2011.07.009

Lyche Solheim, A., Tolvanen, A., Skarbøvik, E., Kløve, B., Collentine, D., Kronvang, B., Blicher-Mathiesen, G., Hashemi, F., Juutinen, A., Hellsten, S., Pouta, E., & Vermaat, J. E. (2023). Land-use change in a Nordic future towards bioeconomy: A methodological framework to compare and merge stakeholder and expert opinions on qualitative scenarios. CATENA, 228, 107100. https://doi.org/10.1016/j.catena.2023.107100

Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414. https://doi.org/10.1016/j.landusepol.2019.104414

Mathewos, M., Lencha, S. M., & Tsegaye, M. (2022). Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation. https://doi.org/10.3390/land11101632

Mhawish, Y. M., & Saba, M. (2016). Impact of population growth on land use changes in Wadi Ziqlab of Jordan between 1952 and 2008. International Journal of Applied Sociology, 6(1), 7-14.

Moradi, F., Kaboli, H. S., & Lashkarara, B. (2020). Projection of future land use/cover change in the Izeh-Pyon Plain of Iran using CA-Markov model. Arabian Journal of Geosciences, 13(19), 998. https://doi.org/10.1007/s12517-020-05984-6

Mosandl, R., Günter, S., Stimm, B., & Weber, M. (2008). Ecuador suffers the highest deforestation rate in South America. Gradients in a tropical mountain ecosystem of Ecuador, 37-40. https://doi.org/10.1007/978-3-540-73526-7_4

OpenStreetMap. (2021). OpenStreetMap. https://www.openstreetmap.org/#map=9/0.6193/-78.4753

Ortega Chuquín, J. U., & Arias Muñoz, D. P. (2022). Análisis de los efectos del cambio de uso de suelo en el paisaje del bosque húmedo: Una visión al año 2022 en la cuenca del río Cayapas-Ecuador. SATHIRI, 17(1), 288-311. https://doi.org/10.32645/13906925.1116

Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and multi-layer perceptron-Markov chain models. Remote Sensing, 7(5), 5918-5950. https://doi.org/10.3390/rs70505918

Paegelow, M., Mas, J.-F., Gallardo, M., Camacho, M. T., & García-Álvarez, D. (2022). Pontius Jr. Methods Based on a Cross-Tabulation Matrix to Validate Land Use Cover Maps. En Land Use Cover Datasets and Validation Tools. Springer. https://doi.org/10.1007/978-3-030-90998-7

Peng, J., Zhao, Z., & Liu, D. (2022). Impact of Agricultural Mechanization on Agricultural Production, Income, and Mechanism: Evidence From Hubei Province, China. Frontiers in Environmental Science, 10, 838686. https://doi.org/10.3389/fenvs.2022.838686

Pontius, R. G., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C. D., McConnell, W., Mohd Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Ngoc Trung, T., Veldkamp, A. T. & Verburg, P. H. (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42, 11-37. https://doi.org/10.1007/s00168-007-0138-2

Pontius, R. G., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923

Pontius, R. G., Shusas, E., & McEachern, M. (2004). Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems & Environment, 101(2-3), 251-268. https://doi.org/10.1016/j.agee.2003.09.008

Ramos-Reyes, R., Palomeque-De La Cruz, M. Á., Megia-Vera, H. J., & Pascual-Landeros, D. (2021). Modelo del cambio de uso de suelo en el sistema lagunar Carmen-Pajonal-Machona, México. REVISTA TERRA LATINOAMERICANA, 39. https://doi.org/10.28940/terra.v39i0.587

Richards, P. D., Myers, R. J., Swinton, S. M., & Walker, R. T. (2012). Exchange rates, soybean supply response, and deforestation in South America. Global Environmental Change, 22(2), 454-462. https://doi.org/10.1016/j.gloenvcha.2012.01.004

Rodrigues Da Cunha, E., Guimarães Santos, C. A., Marques Da Silva, R., Bacani, V. M., & Pott, A. (2021). Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy, 101, 105141. https://doi.org/10.1016/j.landusepol.2020.105141

Rodríguez-Echeverry, J., & Leiton, M. (2021). Pérdida y fragmentación de ecosistemas boscosos nativos y su influencia en la diversidad de hábitats en el hotspot Andes tropicales. Revista Mexicana de Biodiversidad, 92(0), 923449. https://doi.org/10.22201/ib.20078706e.2021.92.3449

Rosete Vergés, F. A., Velázquez, A., Bocco, G., & Espejel, I. (2014). Multi-scale land cover dynamics of semiarid scrubland in Baja California, Mexico. Regional Environmental Change, 14(4), 1315-1328. https://doi.org/10.1007/s10113-013-0574-8

Ross, C., Fildes, S., & Millington, A. (2017). Land‐Use and Land‐Cover Change in the Páramo of South‐Central Ecuador, 1979–2014. Land, 6(3), 46. https://doi.org/10.3390/land6030046

Salazar, E., Henríquez, C., Sliuzas, R., & Qüense, J. (2020). Evaluating Spatial Scenarios for Sustainable Development in Quito, Ecuador. ISPRS International Journal of Geo-Information, 9(3), 141. https://doi.org/10.3390/ijgi9030141

Sales, R. G. (2020). Propuesta metodológica para definir unidades locales de gestión para el ordenamiento territorial rural. Revista INVI, 35(98), 126-154. https://doi.org/10.4067/S0718-83582020000100126

Servicio Geológico de Estados Unidos (USGS). (2021). USGS science for changing world. Earth Explorer. https://earthexplorer.usgs.gov/

Shao, G., & Wu, J. (2008). On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecology, 23(5), 505-511. https://doi.org/10.1007/s10980-008-9215-x

Shukla, A. K., Ojha, C. S. P., Mijic, A., Buytaert, W., Pathak, S., Garg, R. D., & Shukla, S. (2018). Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin. Hydrology and Earth System Sciences, 22(9), 4745-4770. https://doi.org/10.5194/hess-22-4745-2018

Sistema Nacional de Información. (2022). Sistema Nacional de Información. https://sni.gob.ec/coberturas

Stevens, D., & Dragićević, S. (2007). A GIS-based irregular cellular automata model of land-use change. Environment and Planning B: Planning and design, 34(4), 708-724. https://doi.org/10.1068/b32098

Sy, V. D., Herold, M., Achard, F., Beuchle, R., Clevers, J. G. P. W., Lindquist, E., & Verchot, L. (2015). Land use patterns and related carbon losses following deforestation in South America. Environmental Research Letters, 10(12), 124004. https://doi.org/10.1088/1748-9326/10/12/124004

Teran, G. J. (2018). Caracterización poblacional de la cuenca hidrográfica Mira-Mataje. SATHIRI, 6(9). https://doi.org/10.32645/13906925.276

Thies, B., Meyer, H., Nauss, T., & Bendix, J. (2014). Projecting land-use and land-cover changes in a tropical mountain forest of Southern Ecuador. Journal of Land Use Science, 9(1), 1-33. https://doi.org/10.1080/1747423X.2012.718378

Thompson, J. B., Zurita-Arthos, L., Müller, F., Chimbolema, S., & Suárez, E. (2021). Land use change in the Ecuadorian páramo: The impact of expanding agriculture on soil carbon storage. Arctic, Antarctic, and Alpine Research, 53(1), 48-59. https://doi.org/10.1080/15230430.2021.1873055

Tolessa, T., Senbeta, F., & Kidane, M. (2017). The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosystem Services, 23, 47-54. https://doi.org/10.1016/j.ecoser.2016.11.010

Ulloa-Espíndola, R., & Martín-Fernández, S. (2021). Simulation and Analysis of Land Use Changes Applying Cellular Automata in the South of Quito and the Machachi Valley, Province of Pichincha, Ecuador. Sustainability, 13(17), 9525. https://doi.org/10.3390/su13179525

van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494-501. https://doi.org/10.1038/s43016-021-00322-9

Verburg, P. H., Neumann, K., & Nol, L. (2011). Challenges in using land use and land cover data for global change studies: LAND USE AND LAND COVER DATA FOR GLOBAL CHANGE STUDIES. Global Change Biology, 17(2), 974-989. https://doi.org/10.1111/j.1365-2486.2010.02307.x

Verburg, P. H., Van Eck, J. R. R., De Nijs, T. C. M., Dijst, M. J., & Schot, P. (2004). Determinants of Land-Use Change Patterns in the Netherlands. Environment and Planning B: Planning and Design, 31(1), 125-150. https://doi.org/10.1068/b307

Wang, J., Zhang, J., Xiong, N., Liang, B., Wang, Z., & Cressey, E. (2022). Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sensing, 14(6), 1452. https://doi.org/10.3390/rs14061452

Wang, S. W., Munkhnasan, L., & Lee, W.-K. (2021). Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges, 2, 100017. https://doi.org/10.1016/j.envc.2020.100017

Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature communications, 12(1), 2501. https://doi.org/10.1038/s41467-021-22702-2

Yatoo, S. A., Sahu, P., Kalubarme, M. H., & Kansara, B. B. (2022). Monitoring land use changes and its future prospects using cellular automata simulation and artificial neural network for Ahmedabad city, India. GeoJournal, 87(2), 765-786. https://doi.org/10.1007/s10708-020-10274-5

Zhai, R., Zhang, C., Li, W., Zhang, X., & Li, X. (2020). Evaluation of Driving Forces of Land Use and Land Cover Change in New England Area by a Mixed Method. ISPRS International Journal of Geo-Information, 9(6), 350. https://doi.org/10.3390/ijgi9060350

Descargas

Estadísticas

Estadísticas en RUA

Publicado

26-01-2024

Cómo citar

Arias-Muñoz, P., Saz, M. Ángel, & Escolano, S. (2024). Tendencias de cambio de usos y coberturas de suelo en la cuenca hidrográfica media-alta del río Mira en Ecuador. Investigaciones Geográficas, (81), 155–179. https://doi.org/10.14198/INGEO.25248

Número

Sección

Artículos