¿Influyen tiempo y clima en la distribución del nuevo coronavirus (SARS CoV-2)? Una revisión desde una perspectiva biogeográfica

Autores/as

DOI:

https://doi.org/10.14198/INGEO2020.GHVG

Palabras clave:

geografía médica, biogeografía, patogeografía, bioclimatología, enfermedades, pandemia, COVID-19.

Resumen

El 11 de marzo de 2020, la Organización Mundial de la Salud (OMS) declaró pandemia global el brote de la enfermedad COVID-19, producida por el nuevo coronavirus SARS CoV-2. En este artículo se efectúa una revisión de las contribuciones científicas publicadas hasta la fecha que relacionan las condiciones atmosféricas con la distribución del SARS CoV-2. La mayor parte de ellas concluyen que existe cierta influencia del tiempo atmosférico y/o el clima en la distribución y el progreso de la COVID-19. En concreto, un ambiente fresco y seco, en el contexto de un clima mesotérmico, parece el más idóneo para la expansión del SARS CoV-2. Sin embargo, un número significativo de estudios revisados adolece de diseños de investigación inadecuados, lo que hace muy difícil aislar de forma fehaciente el efecto genuino de las condiciones atmosféricas en la propagación de la enfermedad de otros efectos, incluidos los posibles artefactos derivados de la prevalencia observada, la dependencia espacial y temporal de los datos y la propia geografía humana: conectividad geográfica, movilidad, sistema sanitario, etc. Se concluye que sólo existen indicios, no evidencia, de que las condiciones atmosféricas pueden llegar a explicar una fracción muy limitada de la dinámica espaciotemporal del SARS CoV-2.

Financiación

Universidad de Málaga, Consejo Superior de Investigaciones Científicas

Citas

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1–12. https://doi.org/10.1038/sdata.2017.191

AL-Rousan, N., & Al-Najjar, H. (2020). Nowcasting and Forecasting the Spreading of Novel Coronavirus 2019-nCoV and Its Association with Weather Variables in 30 Chinese Provinces: A Case Study. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3537084

Altamimi, A., & Ahmed, A. E. (2019). Climate factors and incidence of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health. https://doi.org/10.1016/j.jiph.2019.11.011

Alvarez-Ramirez, J., & Meraz, M. (2020). Role of meteorological temperature and relative humidity in the January-February 2020 propagation of 2019-nCoV in Wuhan, China. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.19.20039164

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 89(1), 44–48. https://doi.org/10.1038/s41591-020-0820-9

Araújo, M. B., Anderson, R. P., Barbosa, A. M., Beale, C. M., Dormann, C. F., Early, R., … & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Nature Ecology and Evolution, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858

Araújo, M. B., & Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. MedRxiv. https://doi.org/10.1101/2020.03.12.20034728

Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527–1539. https://doi.org/10.1890/11-1930.1

Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200(1–2), 1–19. https://doi.org/10.1016/j.ecolmodel.2006.07.005

Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E., & Grenfell, B. T. (2020). Susceptible supply limits the role of climate in the COVID-19 pandemic. MedRxiv. https://doi.org/10.1101/2020.04.03.20052787

Banks, N. C., Paini, D. R., Bayliss, K. L., & Hodda, M. (2015). The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecology Letters, 18(2), 188-199. https://doi.org/10.1111/ele.12397

Bannister-Tyrrell, M., Meyer, A., Faverjon, C., & Cameron, A. (2020). Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.18.20036731

Bariotakis, M., Sourvinos, G., Castanas, E., & Pirintsos, S. A. (2020). Climatic influences on the worldwide spread of SARS-CoV-2. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.19.20038158

Bashir, M. F., Ma, B., Bilal, Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of The Total Environment, 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835

Bhattacharjee, V. (2020). Statistical investigation of relationship between spread of coronavirus disease (COVID-19) and environmental factors based on study of four mostly affected places of China and five mostly affected places of Italy. Arxiv. Recuperado de https://arxiv.org/abs/2003.11277

Brady, M. T., Evans, J., & Cuartas, J. (1990). Survival and disinfection of parainfluenza viruses on environmental surfaces. American Journal of Infection Control, 18(1), 18–23. https://doi.org/10.1016/0196-6553(90)90206-8

Brassey, J., Heneghan, C., Mahtani, K. R., & Aronson, J. K. (2020). COVID-19: Do weather conditions influence the transmission of the coronavirus (SARS-CoV-2)? Oxford COVID-19 Evidence Service. Recuperado de https://www.cebm.net/do-weather-conditions-influence-the-transmission-of-the-coronavirus-sars-cov-2/

Briz-Redón, A., & Serrano-Aroca, Á. (2020). A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Science of The Total Environment, 728, 138811. https://doi.org/10.1016/j.scitotenv.2020.138811

Bu, J., Peng, D.-D., Xiao, H., Yue, Q., Han, Y., Lin, Y., … & Chen, J. (2020). Analysis of meteorological conditions and prediction of epidemic trend of 2019-nCoV infection in 2020. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.02.13.20022715

Bukhari, Q., & Jameel, Y. (2020). Will Coronavirus Pandemic Diminish by Summer? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3556998

Carlson, C. J., Chipperfield, J. D., Benito, B. M., Telford, R. J., & O’Hara, R. B. (2020). Species distribution models are inappropriate for COVID-19. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-1212-8

Chan, K. H., Peiris, J. S. M., Lam, S. Y., Poon, L. L. M., Yuen, K. Y., & Seto, W. H. (2011). The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Advances in Virology, 2011, 734690. https://doi.org/10.1155/2011/734690

Chen, B., Liang, H., Yuan, X., Hu, Y., Xu, M., & Zhao, Y. (2020). Roles of meteorological conditions in COVID-19 transmission on a worldwide scale. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.16.20037168

Chin, A., Chu, J., Perera, M., Hui, K., Yen, H., Chan, M., & Poon, L. (2020). Stability of SARS-CoV-2 in different environmental conditions. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.15.20036673

Chipperfield, J. D., Benito, B. M., O’Hara, R. B., Telford, R. J., & Carlson, C. J. (2020). On the inadequacy of species distribution models for modelling the spread of SARS-CoV-2 : response to Araújo and Naimi. EcoEvoRxiv. https://doi.org/10.32942/osf.io/mr6pn

Damgaard, C. (2019). A Critique of the Space-for-Time Substitution Practice in Community Ecology. Trends in Ecology and Evolution, 34(5), 416–421. https://doi.org/10.1016/j.tree.2019.01.013

Díaz, J., García, R., López, C., Linares, C., Tobías, A., & Prieto, L. (2005). Mortality impact of extreme winter temperatures. International Journal of Biometeorology, 49(3), 179–183. https://doi.org/10.1007/s00484-004-0224-4

Díaz, J., Jordán, A., García, R., López, C., Alberdi, J. C., Hernández, E., & Otero, A. (2002). Heat waves in Madrid 1986-1997: Effects on the health of the elderly. International Archives of Occupational and Environmental Health, 75(3), 163–170. https://doi.org/10.1007/s00420-001-0290-4

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet, 3099(20), 19–20. https://doi.org/10.1016/S1473-3099(20)30120-1

Dormann, C. M., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., … & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

Elith, J. (2017). Predicting distributions of invasive species. En Invasive Species: Risk Assessment and Management. https://doi.org/10.1017/9781139019606.006

Escobar, L. E., & Craft, M. E. (2016). Advances and limitations of disease biogeography using ecological niche modeling. Frontiers in Microbiology, 7, 1174. https://doi.org/10.3389/fmicb.2016.01174

Ficetola, G. F., & Rubolini, D. (2020). Climate Affects Global Patterns of Covid-19 Early Outbreak. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.23.20040501

Fick, S., & Hijmans, R. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fourcade, Y., Besnard, A. G., & Secondi, J. (2018). Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 27(2), 245–256. https://doi.org/10.1111/geb.12684

Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and Conservation). New York: Cambridge University Press.

García, L. V. (2004). Escaping the Bonferroni iron claw in ecological studies. Oikos, 105(3), 657–663. https://doi.org/10.1111/j.0030-1299.2004.13046.x

Gil, A., & Olcina, J. (2017). Tratado de Climatología. Alicante: Servicio de Publicaciones de la Universidad de Alicante.

Gregory, D., Johnston, R., Watts, M. J., & Whatmore, S. (2009). The Dictionary of Human Geography (5th Edition). En The Dictionary of Human Geography (p. 1052). West Sussex: Wiley-Blackwell.

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution Models: With Applications in R. https://doi.org/10.1017/9781139028271

Gupta, D. (2020). Effect of Ambient Temperature on COVID-19 Infection Rate. SSRN Electronic Journal. https://doi.org/http://dx.doi.org/10.2139/ssrn.3558470

Gutiérrez-Hernández, O. (2019). Aproximación multiescalar al estudio biogeográfico de los impactos del cambio global en la ecorregión mediterránea. La Biogeografía en el Antropoceno (Tesis doctoral). Universidad de Sevilla. Sevilla.

Gutiérrez-Hernández, O., Cámara Artigas, R., Senciales González, J. M., & García, L. V. (2018). Modelos predictivos en Biogeografía: aplicación para la modelización de nichos ecológicos en Geografía Física. Boletín de La Asociación de Geógrafos Españoles, 78, 88–126. https://doi.org/10.21138/bage.2395

Hall, C. B., Douglas, R. G., & Geiman, J. M. (1980). Possible transmission by fomites of respiratory syncytial virus. Journal of Infectious Diseases, 141(1), 98–102. https://doi.org/10.1093/infdis/141.1.98

Harbert, R., Cunningham, S. W., & Tessler, M. (2020). Spatial modeling cannot currently differentiate SARS-CoV-2 coronavirus and human distributions on the basis of climate in the United States. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.04.08.20057281

Holtmann, M., Jones, M., Shah, A., & Holtmann, G. (2020). Low ambient temperatures are associated with more rapid spread of COVID-19 in the early phase of the endemic. Environmental Research, 109625. https://doi.org/10.1016/j.envres.2020.109625

Hui, D. S., Azhar, E. I., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., … & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009

ISCIII, & AEMET (2020). Primeros indicios de correlación entre variables meteorológicas y propagación del coronavirus y la COVID-19 en España. Recuperado de: https://www.isciii.es/Noticias/Noticias/Paginas/Noticias/AcuerdoISCIIIAEMETEstudioTemperaturasCOVID19.aspx

Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008). Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14(6), 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x

Johnson, E. E., Escobar, L. E., & Zambrana-Torrelio, C. (2019). An Ecological Framework for Modeling the Geography of Disease Transmission. Trends in Ecology and Evolution, 34(7), 655–668. https://doi.org/10.1016/j.tree.2019.03.004

Jüni, P., Rothenbühler, M., Bobos, P., Thorpe, K. E., da Costa, B. R., Fisman, D. N., … & Gesink, D. (2020). Impact of climate and public health interventions on the COVID-19 pandemic: A prospective cohort study. Canadian Medical Association Journal. https://doi.org/https://doi.org/10.1503/cmaj.200920

Kamel, M. N., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. International Journal of Health Geographics, 19(1), 8. https://doi.org/10.1186/s12942-020-00202-8

Khanna, P. (2016). Connectography: Mapping the Future of Global Civilization. Nueva York: Penguin Random House.

Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., …& SARS Working Group (2003). A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 348(20), 1953–1966. https://doi.org/10.1056/NEJMoa030781

Lai, M. M. C., & Cavanagh, D. (1997). The Molecular Biology of Coronaviruses. Advances in virus research, 48, 1–100. https://doi.org/10.1016/S0065-3527(08)60286-9

Lam, T. T.-Y., Shum, M. H.-H., Zhu, H.-C., Tong, Y.-G., Ni, X.-B., Liao, Y.-S., … & Guan, Y. (2020). Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. https://doi.org/10.1038/s41586-020-2169-0

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., & Khosrawipour, T. (2020). The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of Travel Medicine, 001(714). https://doi.org/10.1093/jtm/taaa037

Li, J., & Heap, A. D. (2014). Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53, 173–189.

Li, X., Zai, J., Zhao, Q., Nie, Q., Li, Y., Foley, B. T., & Chaillon, A. (2020). Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. Journal of Medical Virology, 9(6), 602-611. https://doi.org/10.1002/jmv.25731

Lobo, J. M., Jiménez-Valverde, A., & Hortal, J. (2010). The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33(1), 103–114. https://doi.org/10.1111/j.1600-0587.2009.06039.x

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

Lomolino, M. V., Riddle, B. A., & Whittaker, R. J. (2016). Biogeography: Biological Diversity Across Space and Time. Sunderland, Massachusetts: Oxford University Press.

Luo, W., Majumder, M. S., Liu, D., Poirier, C., Mandl, K. D., Lipsitch, M., & Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. MedRxiv. https://doi.org/10.1101/2020.02.12.20022467

Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., … & Luo, B. (2020). Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of the Total Environment, 724, 138226. https://doi.org/10.1016/j.scitotenv.2020.138226

Marston, S. A., Jones, J. P., & Woodward, K. (2005). Human geography without scale. Transactions of the Institute of British Geographers, 30(4), 416–432. https://doi.org/10.1111/j.1475-5661.2005.00180.x

Martinez-Alvarez, M., Jarde, A., Usuf, E., Brotherton, H., Bittaye, M., Samateh, A. L., … & Roca, A. (2020). COVID-19 pandemic in west Africa. The Lancet, 8(5), e631–e632. https://doi.org/10.1016/S2214-109X(20)30123-6

Martínez-Carpio, P. A. (2003). Biometeorología y bioclimatología clínica: Fundamentos, aplicaciones clínicas y estado actual de estas ciencias. Atención Primaria, 32(5), 300–305. https://doi.org/10.1157/13051599

Mecenas, P., Bastos, R., Vallinoto, A., & Normando, D. (2020). Effects of temperature and humidity on the spread of COVID-19: A systematic review. MedRxiv. https://doi.org/10.1101/2020.04.14.20064923

Miller, M. A., Viboud, C., Balinska, M., & Simonsen, L. (2009). The signature features of influenza pandemics - Implications for policy. New England Journal of Medicine, 360(25), 2595–2598. https://doi.org/10.1056/NEJMp0903906

MITECO. (2020). Primeros indicios de correlación entre variables meteorológicas y propagación de la enfermedad COVID-19 y del virus SARS-CoV-2 en España. Recuperado de https://www.miteco.gob.es/es/prensa/ultimas-noticias/primeros-indicios-de-correlación-entre-variables-meteorológicas-y-propagación-de-la-enfermedad-covid-19-y-del-virus-sars-cov-2-en-españa/tcm:30-508652

Murray, K. A., Olivero, J., Roche, B., Tiedt, S., & Guégan, J. F. (2018). Pathogeography: leveraging the biogeography of human infectious diseases for global health management. Ecography, 41(9), 1411–1427. https://doi.org/10.1111/ecog.03625

Murray, K. A., Preston, N., Allen, T., Zambrana-Torrelio, C., Hosseini, P. R., & Daszak, P. (2015). Global biogeography of human infectious diseases. Proceedings of the National Academy of Sciences, 112(41), 12746–12751. https://doi.org/10.1073/pnas.1507442112

Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881

Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Medical Weekly, 150, w20224. https://doi.org/10.4414/smw.2020.20224

Ng, O.-T., Marimuthu, K., Chia, P.-Y., Koh, V., Chiew, C. J., De Wang, L., … & Lee, V. J. M. (2020). SARS-CoV-2 Infection among Travelers Returning from Wuhan, China. New England Journal of Medicine, 6, NEJMc2003100. https://doi.org/10.1056/NEJMc2003100

Notari, A. (2020). Temperature dependence of COVID-19 transmission. MedRrxiv. https://doi.org/10.1101/2020.03.26.20044529

O’Reilly, K., Auzenbergs, M., Jafari, Y., Liu, Y., Flasche, S., & Lowe, R. (2020). Effective transmission across the globe: the role of climate in COVID-19 mitigation strategies. CMMID Repository, 3550308(20), 1–4. https://doi.org/10.1016/S2542-5196(20)30106-6

Oliveiros, B., Caramelo, L., Ferreira, N., & Caramelo, F. (2020). Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.05.20031872

Olivera, A. (1993). Geografía de la Salud. Madrid: Síntesis.

Omori, R., Mizumoto, K., & Chowell, G. (2020). Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate. International Journal of Infectious Diseases, 94, 116–118. https://doi.org/10.1016/j.ijid.2020.04.021

Oto-Peralías, D. (2020). Regional correlations of COVID-19 in Spain. OSF Preprints. https://doi.org/https://doi.org/10.31219/osf.io/tjdgw

Otter, J. A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S. D., & Weber, D. J. (2016). Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. Journal of Hospital Infection, 92(3), 235–250. https://doi.org/10.1016/j.jhin.2015.08.027

Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W., … & Yuen, K. Y. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 361(9366), 1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Bastos Araújo, M. (2011). Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049

Pirtle, E. C., & Beran, G. W. (1991). Virus survival in the environment. Revue Scientifique et Technique (International Office of Epizootics), 10(3), 733–748. https://doi.org/10.20506/rst.10.3.570

Poirier, C., Luo, W., Majumder, M. S., Liu, D., Mandl, K., Mooring, T., & Santillana, M. (2020). The Role of Environmental Factors on Transmission Rates of the COVID-19 Outbreak: An Initial Assessment in Two Spatial Scales. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3552677

Price, R. H. M., Graham, C., & Ramalingam, S. (2019). Association between viral seasonality and meteorological factors. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-018-37481-y

Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3(4), 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x

Reeves, T., Samy, A. M., & Peterson, A. T. (2015). MERS-CoV geography and ecology in the Middle East: Analyses of reported camel exposures and a preliminary risk map. BMC Research Notes, 8(1), 1–7. https://doi.org/10.1186/s13104-015-1789-1

Sajadi, M. M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3550308

Sebastian, M. D., Holger, P. D., Annemarie, P. D., Kortenbusch, M., Jindrich, P. D., & Denisa, M. S. (2020). Correspondence Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. The New England Journal of Medicine. Recuperado de https://www.nejm.org/doi/pdf/10.1056/NEJMc2001899?articleTools=true

Shaman, J., Goldstein, E., & Lipsitch, M. (2011). Absolute humidity and pandemic versus epidemic influenza. American Journal of Epidemiology, 173(2), 127–135. https://doi.org/10.1093/aje/kwq347

Shi, P., Dong, Y., Yan, H., Li, X., Zhao, C., Liu, W., Xi, S. (2020). The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak - evidence from China. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.03.22.20038919

Soberón, J., Osorio-Olvera, L., & Peterson, T. (2017). Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 88(2), 437–441. https://doi.org/10.1016/j.rmb.2017.03.011

Soberón, J., & Peterson, A. (2005). Interpretation of Models of Fundamental Ecological Niches and Species Distributional Areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4

Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H. D., & Rappuoli, R. (2003). SARS — beginning to understand a new virus. Nature Reviews Microbiology, 1(3), 209–218. https://doi.org/10.1038/nrmicro775

Tan, J., Mu, L., Huang, J., Yu, S., Chen, B., & Yin, J. (2005). An initial investigation of the association between the SARS outbreak and weather: With the view of the environmental temperature and its variation. Journal of Epidemiology and Community Health, 59(3), 186–192. https://doi.org/10.1136/jech.2004.020180

Tobler, W. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234–240.

Pacheco, M. T., Mota, J. F., Matos Medina, A., Scalco, P., Terribile, L. C., Vilela, B., ... & Dobrovolski, R. (2020). Exponential phase of covid19 expansion is not driven by climate at global scale. MedRxiv. https://doi.org/https://doi.org/10.1101/2020.04.02.20050773

Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distributions, 18(1), 73–83. https://doi.org/10.1111/j.1472-4642.2011.00854.x

van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of middle east respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance, 18(38), 1–4. https://doi.org/10.2807/1560-7917.ES2013.18.38.20590

van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., … & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 82,1564-1567. https://doi.org/10.1056/NEJMc2004973

Wang, J., Tang, K., Feng, K., & Lv, W. (2020). High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3551767

WHO (2020a). Emergencies preparedness, response. Pneumonia of unknown origin – China. Disease outbreak news. Recuperado de https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/

WHO (2020b). How are new infectious diseases named?. Recuperado de https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it

WHO (2020c). Novel Coronavirus (COVID-19). Situation. Recuperado de https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd

WHO (2020d). Responding to community spread of COVID-19. Interim guidance.

Worby, C. J., Chaves, S. S., Wallinga, J., Lipsitch, M., Finelli, L., & Goldstein, E. (2015). On the relative role of different age groups in influenza epidemics. Epidemics, 13, 10–16. https://doi.org/10.1016/j.epidem.2015.04.003

Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020). The SARS-CoV-2 outbreak: what we know. International Journal of Infectious Diseases, 94(2020), 44–48 . https://doi.org/10.1016/J.IJID.2020.03.004

Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 138201. https://doi.org/10.1016/j.scitotenv.2020.138201

Zhu, G., & Peterson, A. T. (2014). Potential geographic distribution of the novel avian-origin influenza A (H7N9) virus. PLoS ONE, 9(4), 2–7. https://doi.org/10.1371/journal.pone.0093390

Estadísticas

Estadísticas en RUA

Publicado

23-06-2020

Cómo citar

Gutiérrez-Hernández, O., & García, L. V. (2020). ¿Influyen tiempo y clima en la distribución del nuevo coronavirus (SARS CoV-2)? Una revisión desde una perspectiva biogeográfica. Investigaciones Geográficas, (73), 31–55. https://doi.org/10.14198/INGEO2020.GHVG

Número

Sección

Artículos