Aspectos atmosféricos y climáticos en la expansión de la pandemia (COVID-19) en la provincia de Alicante
DOI:
https://doi.org/10.14198/INGEO2020.OCBCMTPalabras clave:
geografía de la salud, SARS-CoV-2, COVID-19, contaminación, temperaturas.Resumen
La pandemia de la COVID-19 se ha convertido en uno de los mayores desafíos recientes que se ha encontrado la ciencia. Multitud de estudios pretenden dar respuesta a la propagación de este coronavirus, hasta ahora desconocido, ante unas condiciones atmosféricas y climáticas determinadas. El estudio de parámetros como la temperatura, la humedad y la radiación en los meses de febrero y marzo de 2020, así como un análisis correlativo con otras variables de distinta temática, pretende ponderar el peso que pudieron haber tenido estas variables en la expansión de este patógeno en la provincia de Alicante. Los resultados obtenidos apuntan, de forma preliminar, como la única variable que guarda relación con la tasa de contagio y la tasa de defunción son las temperaturas máximas. Este hecho podría estar relacionado con el nicho climático del coronavirus, el cual podría ser determinante en su expansión a nivel mundial. La carencia de información sobre las anteriores tasas a nivel municipal, así como la inexistencia de datos de movilidad a tan baja escala, impide establecer unas conclusiones definitorias.
Citas
Agencia Estatal de Meteorología (AEMET). (2020a). Avance Climatológico de Febrero de 2020 en la Comunidad Valenciana. Recuperado de http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/ccaa/comunitat-valenciana/avance_climat_val_feb_2020.pdf
Agencia Estatal de Meteorología (AEMET). (2020b). Primeros indicios de correlación entre variables meteorológicas y propagación de la enfermedad COVID-19 y del virus SARS-CoV-2 en España [Comunicado de prensa]. Recuperado de http://www.aemet.es/es/noticias/2020/04/Covid_variablesmeteorologicas_abril2020
Agencia Estatal de Meteorología (AEMET). (s.d.). AEMET OpenData. Recuperado de https://opendata.aemet.es/
Araújo, M. B., & Naimi, B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. MedRxiv. https://doi.org/10.1101/2020.03.12.20034728
Asociación Meteorológica del Sureste (AMETSE). (s.d.). RedMeteoSE. Recuperado de http://redmeteo.ametse.es/
Asociación Valenciana de Metorología (AVAMET). (s.d.). MeteoXarxa. Recuperado de https://www.avamet.org/mx-meteoxarxa.php
Ahmadi, M., Sharifi, A., Dorosti, S., Ghoushchi, S. J., & Ghanbari, N. (2020). Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Science of The Total Environment, 729, 138705. https://doi.org/10.1016/j.scitotenv.2020.138705
Bäcker, A. (2020). Follow the Sun: Slower COVID-19 Morbidity and Mortality Growth at Higher Irradiances. SSRN. http://dx.doi.org/10.2139/ssrn.3567587
Bashir, M. F., Ma, B. J., Bilal, Komal, B., Bashir, M. A., Farooq, T. H., ..., & Bashir, M. (2020a). Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environmental research, 187, 109652, in press. https://doi.org/10.1016/j.envres.2020.109652
Bashir, M. F., Ma, B., Bilal, Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020b). Correlation between climate indicators and COVID-19 pandemic in New York, USA. The Science of the total environment, 728, 138835, in press. https://doi.org/10.1016/j.scitotenv.2020.138835
Bukhari, Q., & Jameel, Y. (2020).Will Coronavirus Pandemic Diminish by Summer?. SSRN. http://dx.doi.org/10.2139/ssrn.3556998
Caspi, G., Shalit, U., Kristensen, S.L., Aronson, D., Caspi, L., Rossenberg, O., ..., & Caspi, O. (2020). Cliamte effect on COVID-19 spread rate: an online surveillance tool. MedRxiv. https://doi.org/10.1101/2020.03.26.20044727
Castilla, J., Guevara, M., García Cenoz, M., Reina, G., Martínez Artola, V., Zamora, ..., & Salcedo, E. (2011). Diferencias entre las ondas gripales de verano y de otoño durante la pandemia de gripe (H1N1) 2009 en Navarra. Revista Española de Salud Pública, 85, 47-56. Recuperado de https://www.scielosp.org/article/resp/2011.v85n1/47-56/
CaixaBank Research (2020). Las segundas residencias en España: ¿mar o montaña? Informe sectorial inmobiliario. Primer semestre 2020. Recuperado de https://www.caixabankresearch.com/sites/default/files/documents/informesectorial-inmobiliario-1s2020-esp.pdf
Centro Superior de Investigaciones Científicas (CSIC). (2020). Informe sobre la transmisión del SARS-CoV-2 en playas y piscinas. Recuperado de https://www.csic.es/sites/default/files/informe_playasypiscinas_csic.pdf
Chan, K., Peiris, J., Lam, S., Poon, L., Yuen, K., & Seto, W. (2011). The effects of temperature and relative humidity on the viability of the SARS coronavirus. Advances in virology, 11(1), 734690. https://doi.org/10.1155/2011/734690
Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?. Environmental pollution (Barking, Essex: 1987), 261, 114465. https://doi.org/10.1016/j.envpol.2020.114465
Envejecimiento en red. (2015). Residencias en Alicante/Alacant. Datos actualizados en septiembre de 2015. Recuperado de http://envejecimiento.csic.es/documentos/recursos/residencias/alicante.xlsx
European Centre for Medium-Range Weather Forecasts (ECWMF). (2020a). Surface air temperature for February 2020. Recuperado de https://climate.copernicus.eu/surface-air-temperature-february-2020
European Centre for Medium-Range Weather Forecasts (ECWMF). (2020b). Climate Data Store - Monthly climate explorer for COVID-19. Recuperado de https://cds.climate.copernicus.eu/apps/c3s/app-c3s-monthly-climate-covid-19-explorer
Fernández de Arróyabe Hernáez, P. (2004). La variación temporal y espacial de la tasa de gripe en España y su relación con diferentes parámetros atmosféricos durante el período 1997-2002. En J.C. García Codron, C. Diego Liaño, P. Fernández de Arróyabe Hernáez, C. Garmendia Pedraja y D. Rasilla Álvarez (Eds.), El clima entre el mar y la montaña (pp. 629-639). Santander: Asociación Española de Climatología. Recuperado de http://hdl.handle.net/20.500.11765/9069
Ficetola, G.F., & Rubolini, D. (2020). Climate affects global patterns of COVID-19 early outbreak dynamics. MedRxiv. https://doi.org/10.1101/2020.03.23.20040501
Foxman, E. F., Storer, J. A., Fitzgerald, M. E., Wasik, B. R., Hou, L., Zhao, H., ..., & Iwasaki, A. (2015). Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells. Proceedings of the National Academy of Sciences, 112(3), 827-832. https://doi.org/10.1073/pnas.1411030112
Gudbjartsson, D. F., Helgason, A., Jonsson, H., Magnusson, O. T., Melsted, P., Norddahl, G. L., …, & Stefansson, K. (2020). Spread of SARS-CoV-2 in the Icelandic Population. New England Journal of Medicine, 1-14. https://doi.org/10.1056/NEJMoa2006100
Gutiérrez-Hernández, O., & García, L.V. (2020). ¿Influyen tiempo y clima en la distribución del nuevo coronavirus (SARS CoV-2)? Una revisión desde una perspectiva biogeográfica. Investigaciones Geográficas, in press. https://doi.org/10.14198/INGEO2020.GHVG
Instituto de Salud Carlos III. (2019). La contaminación del aire, protagonista del Día Mundial del Medio Ambiente: muertes prematuras evitables [Comunicado de prensa]. Recuperado de https://repisalud.isciii.es/bitstream/20.500.12105/7937/1/2019_06_04_LaContaminaci%c3%b3nDelAire.pdf
Instituto Valenciano de Investigaciones Agrarias (IVIA). (s.d.). RiegosIVIA. Recuperado de http://riegos.ivia.es/datos-meteorologicos
Lavezzo, E., Franchin, E., Ciavarella, C., Cuomo-Dannenburg, G., Barzon, L., Sciero, M., …, & Alessandra, R. (2020). Suppressión of COVID-19 outbreack in the municipality of Vo, Italy. MedRxiv. https://doi.org/10.1101/2020.04.17.20053157
León-Gómez, I., Delgado-Sanz, C., Jiménez-Jorge, S., Flores, V., Simón, F., Gómez-Barroso, D., …, & de Mateo Ontañón, S. (2015). Exceso de mortalidad relacionado con la gripe en España en el invierno de 2012. Gaceta Sanitaria, 29(4), 258-265. https://doi.org/10.1016/j.gaceta.2015.01.011
Lin, K., Fong, D. Y. T., Zhu, B., & Karlberg, J. (2005). Environmental factors on the SARS epidemic: air temperature, passage of time and multiplicative effect of hospital infection. Epidemiology & Infection, 134(2), 223-230. https://doi.org/10.1017/S0950268805005054
Lowen, A. C., Mubareka, S. Steel, J., & Palese, P. (2007). Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog, 3(10), e151. https://doi.org/10.1371/journal.ppat.0030151
Luo, W., Majumder, M., Liu, D. Poirier, C., Mandl, KD., Lipsitch, M., & Santillana, M. (2020). The role of absolute humidity on transmission rates of the COVID-19 outbreak. MedRxiv. https://doi.org/10.1101/2020.02.12.20022467
Mazzoli, M., Mateo, D., Hernando, A., Meloni, S., & Ramasco, J.J. (2020). Effects of mobility and multi-seeding on the propagation of the COVID-19 in Spain. MedRxiv. https://doi.org/10.1101/2020.05.09.20096339
Ministerio de Fomento, Movilidad y Agenda Urbana. (2018). Observatorio de Transporte y la Logística de España. Estudio Piloto de Movilidad Interprovincial. Recuperado de https://observatoriotransporte.mitma.es/estudio-experimental
Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of the Total Environment, 726, 138605. https://doi.org/10.1016/j.scitotenv.2020.138605
Organización Mundial de la Salud (OMS). (2006). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. Resumen evaluación de riesgos. Recuperado de https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=695A37D2DD8EC724346349C3E72D5416?sequence=1
Qian, H., Miao, T., Liu, L., Zheng, X., Luo, D., & Li, Y. (2020). Indoor transmission of SARS-CoV-2. MedRxiv. https://doi.org/10.1101/2020.04.04.20053058
Sajadi, M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., & Amoroso, A. (2020). Temperature, Humidity and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN. http://dx.doi.org/10.2139/ssrn.3550308
Van Doremalen, N., Bushmaker, T., & Munster, V. J. (2013). Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance, 18(38), 20590. https://doi.org/10.2807/1560-7917.ES2013.18.38.20590
Wang, J., Tang, K., Feng, K., & Lv, W. (2020a). High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN. http://dx.doi.org/10.2139/ssrn.3551767
Wang, M., Jiang, A., Gong, L., Luo, L., Guo, W., Li, C., …, & Li, H. (2020b). Temperature significant change COVID-19 Transmission in 429 cities. MedRxiv. https://doi.org/10.1101/2020.02.22.20025791
Wu, X., Nethery, R.C., Sabath, B.M., Braun, D. & Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. MedRxiv. https://doi.org/10.1101/2020.04.05.20054502
Weather Underground (Wunderground). (s.d.) WunderMap. Recuperado de https://www.wunderground.com/wundermap
Zhu, Y., Xie, J., Huang, F., & Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. The Science of the total environment, 727, 138704. https://doi.org/10.1016/j.scitotenv.2020.138704
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Jorge Olcina Cantos, Samuel Biener Camacho, Javier Martí Talavera
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publican en Investigaciones Geográficas están de acuerdo en los siguientes términos:
- Derechos de autor: La autoría conserva los derechos sobre sus trabajos, aunque cede de forma no exclusiva los derechos de explotación (reproducción, edición, distribución, comunicación pública y exhibición) a la revista. Los autores/as son, por tanto, libres de hacer acuerdos contractuales adicionales independientes para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, alojarlo en un repositorio institucional o publicarlo en un libro), siempre que medie un reconocimiento de su publicación inicial en esta revista.
- Manifiesto: Los autores aseguran que Investigaciones Geográficas es el primer medio que publica su obra y garantizan que mientras se encuentra en fase de valoración y posible publicación en nuestra revista no se ha enviado, ni enviará a otros medios.
- Licencia: Los trabajos se publican bajo una licencia Creative Commons de Atribución-NoComercial-CompartirIgual 4.0 Internacional, salvo que se indique lo contrario. Esto es que se puede compartir y adaptar el material siempre que no se use con fines comerciales, se distribuya bajo la misma licencia del original, se realice atribución a la autoría y al primer medio que publica y se proporcione un enlace a la licencia. Igualmente hay que indicar si se han realizado cambios.
- Política de autoarchivo: Se permite y alienta a los autores/as a difundir electrónicamente el artículo final publicado (versión del editor) en Investigaciones Geográficas (como en repositorios institucionales, en su página web, ...) con el fin de lograr intercambios productivos y conseguir que la obra logre mayor citación (véase The Effect of Open Access, en inglés).