Reconstrucción dendroclimática de la serie de precipitaciones en el Valle de Polaciones (Cantabria)
DOI:
https://doi.org/10.14198/INGEO2018.69.09Palabras clave:
Fagus sylvatica, dendroclimatología, reconstrucción climática, reconstrucción precipitación, Polaciones.Resumen
Se realiza una reconstrucción dendroclimática a partir de los datos de nueve cronologías del taxón Fagus sylvatica repartidas en Polaciones, un valle de la montaña central cantábrica. El trabajo se basa en una relación estadística fiable y replicable entre los datos climáticos de referencia de la Climatic Research Unit y las cronologías de anillos de crecimiento. Los resultados obtenidos en la relación crecimiento-clima para la precipitación resultan estadísticamente significativos para los meses entre abril a agosto, lo que permite reconstruir las variaciones interanuales de ésta entre 1798 y 2011, cubriendo así un periodo en el que no se dispone de registros instrumentales. Por otro lado, se elabora una serie de referencia para el área de análisis y se calculan los años favorables y desfavorables en el crecimiento de la especie. La búsqueda de coincidencias que ayuden a comprender el comportamiento de Fagus sylvatica en respuesta al clima en su ámbito meridional de distribución en Europa, lleva a estimar los años secos y húmedos obtenidos de la reconstrucción, que son puestos en relación con los crecimientos.Citas
Agencia Estatal de Meteorología (AEMET) (2013). Datos termopluviométricos de la estación meteorológica de Uznayo (Cantabria). Madrid: Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, AEMET, Delegación Territorial en Cantabria.
Agencia Estatal de Meteorología (AEMET) (2016). Visor del Atlas climático de la Península y Baleares, 1971-2000. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Rural y Marino, Madrid, Instituto de Meteorología de Portugal. Recuperado de http://agroclimap.aemet.es/#
Andreu, L., Gutierrez, E., Macias, M., Ribas, M., Bosch, O. y Camarero, J.J. (2007). Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biol., 13, 804-815. https://doi.org/10.1111/j.1365-2486.2007.01322.x
Biondi, F. (1993). Climatic signals in tree-rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecologica, 14, 57-71. Retrieved from https://www.researchgate.net/profile/Franco_Biondi/publication/279895651_Climatic_signals_in_tree_rings_of_Fagus_sylvatica_L_from_the_central_Apennines_Italy/links/5670624c08ae2b1f87ace379.pdf
Biondi, F. & Visani, S. (1996). Recent developments in the analysis of an Italian tree-ring network with emphasis on European beech (Fagus sylvatica L.). In J.S. Dean, D.M. Meko, T.W. Swetnam (eds.), Tree Rings, Environment and Humanity (pp. 713-725). Retrieved from http://wolfweb.unr.edu/homepage/fbiondi/Biondi&Visani1996.pdf
Bunn, A.G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115-124. http://dx.doi.org/10.1016/j.dendro.2008.01.002
Bradley, R.S. (Ed.) (1990). Global change in the past. Colorado: University Corporation for Atmospheric Research (UCAR), Office for Interdisciplinary Earth Studies.
Briffa, K.R., Jones, P.D. & Schweingruber, F.H. (1988). Summer temperature patterns over Europe: a reconstruction from 1750 AD based on maximum latewood density indices of conifers. Quaternary Research, 30(1), 36-52. https://doi.org/10.1016/0033-5894(88)90086-5
Cai, Q., Liu, Y. & Tian, H. (2013). A dendroclimatic reconstruction of May–June mean temperature variation in the Heng Mounatins, north China, since 1767 AD. Quaternary international, 283, 3-10. https://doi.org/10.1016/j.quaint.2012.03.034
Camarero, J.J. & Gutiérrez, E. (2004). Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change, 63(1-2), 181-200. https://doi.org/10.1023/B:CLIM.0000018507.71343.46
Case, R.A. & MacDonald, G.M. (1995). A dendroclimatic reconstruction of annual precipitation on the western Canadian prairies since AD 1505 from Pinus flexilis James. Quaternary Research, 44(2), 267-275. https://doi.org/10.1006/qres.1995.1071
Centro Nacional de Información Geográfica (CNIG) (2012). Modelo Digital del Terreno LIDAR. Madrid: Ministerio de Fomento, Instituto Geográfico Nacional, Centro Nacional de Información Geográfica (CNIG). Recuperado de http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
Cook, E. & Kairiukstis, L. (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. https://doi.org/10.1007/978-94-015-7879-0
Cook, E.R. & Kairiukstis, L.A. (Eds.) (2013). Methods of dendrochronology: applications in the environmental sciences. Springer Science and Business Media.
Cook, R.D. & Weisberg, S. (1994). An Introduction to Regression Graphics. https://doi.org/10.1002/
Colley, W.W. & Lohnes, P.R. (1971). Multivariate data analysis. New York: J. Wiley and Sons Inc.
CRU (2017). Climatic Research Unit. Retrieved from http://www.cru.uea.ac.uk/data
Čufar, K., Prislan, P. & Gričar, J. (2008). Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research, (53), 1-11. Retrieved from http://eprints.gozdis.si/id/eprint/602
De Luis, M.D., Raventós, J., González-Hidalgo, J.C., Sánchez, J.R. & Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (East Spain). International Journal of Climatology, 20(12), 1451-1469. Retrieved from http://www.unizar.es/mdla/publications_archivos/011_De%20Luis_et_al.,_2000_(IJC).pdf
De Luis, M.D., Brunetti, M., Gonzalez-Hidalgo, J. C., Longares, L. A. & Martin-Vide, J. (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946-2005. Global and Planetary Change, 74(1), 27-33. https://doi.org/10.1016/j.gloplacha.2010.06.006
Dittmar, C., Zech, W. & Elling, W. (2003). Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. Forest Ecology and Management, 173, 63-78. http://dx.doi.org/10.1016/S0378-1127(01)00816-7
Di Filippo, A., Biondi, F., Čufar, K., De Luis, M., Grabner, M., Maugeri, M. & Piovesan, G. (2007). Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree‐ring network. Journal of Biogeography, 34(11), 1873-1892. https://doi.org/10.1111/j.1365-2699.2007.01747.x
Di Filippo, A., Biondi, F., Maugeri, M., Schirone, B. & Piovesan, G. (2012). Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Global change biology, 18(3), 960-972. https://doi.org/10.1111/j.1365-2486.2011.02617.x
Drobyshev, I., Övergaard, R., Saygin, I., Niklasson, M., Hickler, T., Karlsson, M. & Sykes, M.T. (2010). Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. Forest Ecology and Management, 259(11), 2160-2171. https://doi.org/10.1016/j.foreco.2010.01.037
Eilmann, B., Sterck, F., Wegner, L., de Vries, S.M., Von Arx, G., Mohren, G.M. & Sass-Klaassen, U. (2014). Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree physiology, 34(8), 882-893. https://doi.org/10.1093/treephys/tpu069
Esper, J., Cook, E.R. & Schweingruber, F.H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250-2253. https://doi.org/10.1126/science.1066208
Flower, A. & Smith, D.J. (2011). A dendroclimatic reconstruction of June-July mean temperature in the northern Canadian Rocky Mountains. Dendrochronologia, 29(1), 55-63. https://doi.org/10.1016/j.dendro.2010.10.001
Friedrichs, D.A., Trouet, V., Büntgen, U., Frank, D.C., Esper, J., Neuwirth, B. & Löffler, J. (2009). Species-specific climate sensitivity of tree growth in Central-West Germany. Trees, 23(4), 729-739. https://doi.org/10.1007/s00468-009-0315-2
Fritts, H.C. (2012). Tree Rings and Climate. London: Academic Press.
Fritts, H.C., Guiot, J., Gordon, G.A., & Schweingruber, F. (1990). Methods of calibration, verification, and reconstruction. In E.R., Cook & L.A. Kairiukstis (eds), Methods of Dendrochronology (pp. 163-217). https://doi.org/10.1007/978-94-015-7879-0_4
Giorgi, F., Bi, X. & Pal, J.S. (2004). Mean, interannual variability and trends in a regional climate change experiment over Europe, I. Present-day climate (1961–1990). Clim. Dynam., 22, 733-756. https://doi.org/10.1007/s00382-004-0467-0
Gómez-Manzanedo, M., Roig, S. & Reque, J.A. (2008). Silvicultural characterization of the Cantabrian beech forest: the influence of site conditions and anthropic uses. Forest Systems, 17(2), 168-177. http://dx.doi.org/10.5424/srf/2008172-01031
Gutiérrez, E. (1988). Dendroecological study of Fagus sylvatica L. in the Montseny mountains (Spain). Acta Oecologica. Oecología Plantarum, 9, 301-309.
Gutiérrez, E. (2009). La dendrocronología: métodos y aplicaciones. En X. Nieto i M.A. Cau, (Eds.), Arqueología nautica mediterrània. Monografies del CASC (pp. 309-322). Girona: Generalitat de Catalunya.
Griggs, C., Pearson, C., Manning, S.W. & Lorentzen, B. (2014). A 250‐year annual precipitation reconstruction and drought assessment for Cyprus from Pinus brutia Ten. tree‐rings. International Journal of Climatology, 34(8), 2702-2714. https://doi.org/10.1002/joc.3869
Grissino-Mayer, H.D. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-ring research, 57(2), 205-221. Retrieved from http://hdl.handle.net/10150/251654
Harris, I.P.D.J., Jones, P.D., Osborn, T.J. & Lister, D.H. (2014). Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34(3), 623-642. https://doi.org/10.1002/joc.3711
Herrera, J., Laskurain, N.A., Olano, J.M., Loidi, J., Escudero, A. y Olano, J.M. (2001). Sucesión secundaria en un abedular-hayedo en el Parque Natural de Urquiola (Vizcaya). Lazaroa, 22, 59-66. Recuperado de https://revistas.ucm.es/index.php/LAZA/article/viewFile/LAZA0101110059A/9322
Holmes, R.L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-ring bulletin, 43(1), 69-78. Retrieved from http://hdl.handle.net/10150/261223
Hughes, M.K., Swetnam, T.W., Diaz, H.F. (Eds). (2011). Dendroclimatology: Progress and Prospects. Springer: Dordrecht. https://doi.org/10.1007/978-1-4020-5725-0
Jump, A.S., Hunt, J.M. & Peñuelas, J. (2006). Rapid climate change-related growth decline at the southern range-ege of Fagus sylvatica. Global Change Biology, 12(11), 2163-2174. https://doi.org/10.1111/j.1365-2486.2006.01250.x
Jump, A.S., Hunt, J.M. & Peñuelas, J. (2007). Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain. Ecoscience, 14(4), 507-518. https://doi.org/10.2980/1195-6860(2007)14[507:CROGAE]2.0.CO;2
Kharuk, V.I., Dvinskaya, M.L. & Ranson, K.J. (2013). Fire return intervals within the northern boundary of the larch forest in Central Siberia. International Journal of Wildland Fire, 22(2), 207-211. http://dx.doi.org/10.1071/WF11181
Lebourgeois, F. (2005). Approche dendroécologique de la sensibilité du Hêtre (Fagus sylvatica L.) au climat en France et en Europe. Revue Forestiere Francaise, 1, 33-50. https://doi.org/10.4267/2042/5021
Lebourgeois, F., Breda, N., Ulrich, E. & Granier, A. (2005). Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19, 385-401. https://doi.org/10.1007/s00468-004-0397-9
Lebourgeois, F. & Mérian, P. (2012). Principes et méthodes de la dendrochronologie. (Doctoral dissertation, AgroParisTech). Retrieved from https://hal.archives-ouvertes.fr/cel-01627048
López-Moreno, J. I., El-Kenawy, A., Revuelto, J., Azorín-Molina, C., Morán-Tejeda, E., Lorenzo-Lacruz, J., ... & Vicente-Serrano, S.M. (2014). Observed trends and future projections for winter warm events in the Ebro basin, northeast Iberian Peninsula. Int. J. Climatol., 34, 49-60. https://doi.org/10.1002/joc.3665
Luckman, B.H. (1990). Mountain areas and global change: a view from the Canadian Rockies. Mountain Research and Development, 10(2), 183-195. https://doi.org/10.2307/3673428
Martinez del Castillo, E., Longares, L. A., Gričar, J., Prislan, P., Gil-Pelegrín, E., Čufar, K. & De Luis, M. (2016). Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions. Frontiers in Plant Science, 7, 370. https://doi.org/10.3389/fpls.2016.00370
McGuire, A.D., Ruess, R.W., Lloyd, A., Yarie, J., Clein, J.S. & Juday, G. P. (2010). Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives. Canadian Journal of Forest Research, 40(7), 1197-1209. https://doi.org/10.1139/X09-206
Michelot, A., Bréda, N., Damesin, C. & Dufrêne, E. (2012a). Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest ecology and management, 265, 161-171. https://doi.org/10.1016/j.foreco.2011.10.024
Michelot, A., Simard, S., Rathgeber, C., Dufrêne, E. & Damesin, C. (2012b). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree physiology, 32(8), 1033-1045. https://doi.org/10.1093/treephys/tps052
Pena-Angulo, D., Cortesi, N., Brunetti, M., and González-Hidalgo, J.C. (2015). Spatial variability of maximum and minimum monthly temperature in Spain during 1981–2010 evaluated by correlation decay distance (CDD). Theor. Appl. Climatol., 122, 35-45. https://doi.org/10.1007/s00704-014-1277-x
Peñuelas, J., Ogaya, R., Boada, M.S. & Jump, A. (2007). Migration, invasion and decline: changes in recruitment and forest structure in a warming‐linked shift of European beech forest in Catalonia (NE Spain). Ecography, 30(6), 829-837. https://doi.org/10.1111/j.2007.0906-7590.05247.x
Piovesan, G., Bernabei, M., Di Filippo, A., Romagnoli, M. & Schirone, B. (2003). A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia, 21(1), 13-22. https://doi.org/10.1078/1125-7865-00036
Piovesan, G., Biondi, F., Bernabei, M., Di Filippo, A. & Schirone, B. (2005a). Spatial and altitudinal bioclimatic zones of the Italian Peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecologica, 27, 197-210. http://dx.doi.org/10.1016/j.actao.2005.01.001
Piovesan, G., Di Filippo, A., Alessandrini, A., Biondi, F. & Schirone, B. (2005b). Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. Journal of Vegetation Science, 16, 13-28. https://doi.org/10.1111/j.1654-1103.2005.tb02334.x
Piutti, E. & Cescatti, A., (1997). A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Canadian Journal of Forest Research, 27, 277-284. https://doi.org/10.1139/x96-176
Prislan, P., Schmitt, U., Koch, G., Gričar, J. & Čufar, K. (2011). Seasonal ultrastructural changes in the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. Iawa Journal, 32(4), 443-459. Retrieved from http://booksandjournals.brillonline.com/content/journals/10.1163/22941932-90000070
Prislan, P., Gričar, J., de Luis, M., Smith, K. T. & Čufar, K. (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and forest meteorology, 180, 142-151. http://dx.doi.org/10.1016/j.agrformet.2013.06.001
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna: the R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
Raso, J.M. (1997). The recent evolution of mean annual temperatures in Spain. Advances in Historical Climatology in Spain. Vilassar de Mar: Oikos-tau. 201-223.
Robson, T.M., Rasztovits, E., Aphalo, P.J., Alia, R. & Aranda, I. (2013). Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agricultural and forest meteorology, 180, 76-85. https://doi.org/10.1016/j.agrformet.2013.05.008
Rodrigo, F.S., Esteban-Parra, M.J., Pozo-Vázquez, D. & Castro-Diez, Y. (1999). A 500-year precipitation record in southern Spain, Int. J. Climatol, 19, 1233-1253. Retrieved from https://www.researchgate.net/profile/Fernando_Rodrigo2/publication/228553409_A_500year_precipitation_record_in_Southern_Spain/links/09e4150bf0af7d316d000000.pdf
Rozas, V. (2001). Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science, 58, 237-251. http://dx.doi.org/10.1051/forest:2001123
Rozas, V. (2006). Characterization and analysis of climatic signal in chronologies of Fagus sylvatica L. and Quercus robur L. in the central Cantabrian region, Spain. Forest Systems, 15(2), 182-196. Recuperado de https://www.researchgate.net/profile/Vicente_Rozas/publication/279479060_Characterization_and_analysis_of_climatic_signal_in_chronologies_of_Fagus_sylvatica_L_and_Quercus_robur_L_in_the_central_Cantabrian_region_Spain/links/5673c4f308aee7a4274589fa.pdf
Rozas, V., Camarero, J. J., Sangüesa-Barreda, G., Souto, M. & García-González, I. (2015). Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agricultural and Forest Meteorology, 201, 153-164. http://dx.doi.org/10.1016/j.agrformet.2014.11.012
Rubio, A., Blanco, A., Sanz, V. G., Sánchez, O. y Elena, R. (2003). Autoecología paramétrica de los hayedos de Castilla y León. Investigación agraria. Sistemas y recursos forestales, 12(1), 87-110. Recuperado de https://recyt.fecyt.es/index.php/IA/article/view/2485
Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C. & Wilmking, M. (2011). Drought matters-Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 262(6), 947-961. http://dx.doi.org/10.1016/j.foreco.2011.05.026
Scharnweber, T., Manthey, M. & Wilmking, M. (2013). Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree physiology, 33(4), 425-437. https://doi.org/10.1093/treephys/tpt020
Schweingruber, F.H. (1990). Anatomy of European woods.An atlas for the identification of European trees, shrubs and dwarf shrubs. Berne: Paul Haupt.
Schweingruber, F.H. (2012). Trees and wood in dendrochronology: morphological, anatomical, and tree-ring analytical characteristics of trees frequently used in dendrochronology. Verlag, Berlin, Germany: Springer Science and Business Media.
Shi, C., Masson-Delmotte, V., Daux, V., Li, Z., Carré, M. & Moore, J.C. (2015). Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology. Climate Dynamics, 45(5-6), 1367-1380. https://doi.org/10.1007/s00382-014-2386-z
Speer, J.H. (2010). Fundamentals of tree-ring research. Tucson: University of Arizona Press.
Stokes, M.A. & Smiley, T.L. (1968). An Introduction to Tree-ring Dating. Chicago: The University of Chicago Press.
Takahashi, K., Tokumitsu, Y. & Yasue, K. (2005). Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, Central Japan. Ecological Research, 20(4), 445-451. https://doi.org/10.1007/s11284-005-0060-y
Takahashi, K., Okuhara, I., Tokumitsu, Y. & Yasue, K. (2011). Responses to climate by tree-ring widths and maximum latewood densities of two Abies species at upper and lower altitudinal distribution limits in central Japan. Trees, 25(4), 745-753. https://doi.org/10.1007/s00468-011-0552-z
Tardif, J., Camarero, J.J., Ribas, M. & Gutiérrez, E. (2003). Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecological Monographs, 73(2), 241-257. Retrieved from http://www.jstor.org/stable/3100016?seq=1#page_scan_tab_contents
Tegel, W., Seim, A., Hakelberg, D., Hoffmann, S., Panev, M., Westphal, T. & Büntgen, U. (2014). A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research, 133(1), 61-71. https://doi.org/10.1007/s10342-013-0737-7
Tejedor, E., De Luis, M., Cuadrat, J.M., Esper, J. & Saz, M.Á. (2016). Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694. International journal of biometeorology, 60(3), 361-372. https://doi.org/10.1007/s00484-015-1033-7
Tejedor, E., Saz, M. A., Esper, J., Cuadrat, J. M., & Luis, M. (2017). Summer drought reconstruction in northeastern Spain inferred from a tree ring latewood network since 1734. Geophysical Research Letters, 44(16), 8492-8500. https://doi.org/10.1002/2017GL074748
Vavrcik, H., Gryc, V., Mensik, L. & Baar, J. (2013). Xylem formation in Fagus sylvatica during one growing season. Dendrobiology, 69, 69-75. http://dx.doi.org/10.12657/denbio.069.008
Vicente-Serrano, S.M. (2006). Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrolog. Sci. J., 51, 83-97. https://doi.org/10.1623/hysj.51.1.83
Wigley, T.M., Briffa, K.R. & Jones, P.D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of climate and Applied Meteorology, 23(2), 201-213. http://dx.doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
Yamaguchi, D. K. (1991). A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21(3), 414-416. https://doi.org/10.1139/x91-053
Zhang, R.B., Yuan, Y.J., Wei, W.S., Gou, X.H., Yu, S.L., Shang, H.M., ... & Qin, L. (2015). Dendroclimatic reconstruction of autumn–winter mean minimum temperature in the eastern Tibetan Plateau since 1600 AD. Dendrochronologia, 33, 1-7. https://doi.org/10.1016/j.dendro.2014.09.001
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Víctor Lallana Llorente
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publican en Investigaciones Geográficas están de acuerdo en los siguientes términos:
- Derechos de autor: La autoría conserva los derechos sobre sus trabajos, aunque cede de forma no exclusiva los derechos de explotación (reproducción, edición, distribución, comunicación pública y exhibición) a la revista. Los autores/as son, por tanto, libres de hacer acuerdos contractuales adicionales independientes para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, alojarlo en un repositorio institucional o publicarlo en un libro), siempre que medie un reconocimiento de su publicación inicial en esta revista.
- Manifiesto: Los autores aseguran que Investigaciones Geográficas es el primer medio que publica su obra y garantizan que mientras se encuentra en fase de valoración y posible publicación en nuestra revista no se ha enviado, ni enviará a otros medios.
- Licencia: Los trabajos se publican bajo una licencia Creative Commons de Atribución-NoComercial-CompartirIgual 4.0 Internacional, salvo que se indique lo contrario. Esto es que se puede compartir y adaptar el material siempre que no se use con fines comerciales, se distribuya bajo la misma licencia del original, se realice atribución a la autoría y al primer medio que publica y se proporcione un enlace a la licencia. Igualmente hay que indicar si se han realizado cambios.
- Política de autoarchivo: Se permite y alienta a los autores/as a difundir electrónicamente el artículo final publicado (versión del editor) en Investigaciones Geográficas (como en repositorios institucionales, en su página web, ...) con el fin de lograr intercambios productivos y conseguir que la obra logre mayor citación (véase The Effect of Open Access, en inglés).